
On the S-box in GAGE and InGAGE

Danilo Gligoroski

Department of Information Security and Communication Technology, NTNU, Norway
danilog@ntnu.no

Abstract. We discuss some properties of the S-box of GAGE and its nonlinear layer. The submission
documentation of GAGE mentions that ”The nonlinear operations can be realized either as reading from
small lookup tables or as register operations that perform only SHIFT, XOR, AND and NOT operations”, but it
is not explained how can it be done. In this note we describe how that can be realized. As a consequence,
we show that modeled as a sequence of vector operations in the vector space GF p2qb`2, GAGE has only
one nonlinear vector AND operation per round. It makes GAGE a potential lightweight cryptographic
candidate for the recent increased interest in designing of MPC protocols, SNARKs, and post-quantum
signature schemes.

1 Introduction

GAGE is a family of lightweight cryptographic hash functions submitted as a Round 1 candidate for
the NIST Lightweight Cryptography Standardization process [2]. It is a sponge-based family [1] with
states between 232 up to 576 bits, and rates from 8 up to 128 bits. InGAGE is an authenticated cipher
based on GAGE. Among all 56 submissions, GAGE uses the smallest S-box with a size 4ˆ2, and the
smallest round constants that have a size of only 2 bits. Another unique design property of GAGE’s
S-box is that it is applied in an interleaved fashion unlike the traditional use of S-boxes where the
state is separated in disjunctive subsets. The submission documentation of GAGE mentions that
”The nonlinear operations can be realized either as reading from small lookup tables or as register
operations that perform only SHIFT, XOR, AND and NOT operations”, but it is not explained how can
it be done. In this note we describe how that can be realized, and we discuss some possible benefits
of that.

Next, we repeat some of the definitions for the nonlinear part of GAGE as given in [2].

2 The nonlinear layer and the choice of the S-box in GAGE

The nonlinear substitution part uses one 4-to-2 bits s-box Q that is applied in an interleaved way on
the state of b bits. Interleaved application means that the set of state bits is split in 2-bit subsets,
and they enter the s-boxes in two different roles: as two left most bits and as two rightmost bits. The
s-box is applied in parallel. This interleaved application makes the substitution layer as one big s-box
with pb` 2q-to-b bits. For transforming the two left most bits of the state, a two bit round constant
l “ pl0,1, l1,1q is used. A graphical presentation of the substitution layer is given in Figure 1.

The 4-to-2 bits s-box Q can be represented in a usual manner as one table with 24 elements,
where the elements are from the set t0, 1, 2, 3u (given in Table 1).

Input: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Output: 1 0 3 2 0 2 1 3 2 3 0 1 3 1 2 0

Table 1: The 4-to-2 bits s-box Q.

It can be also represented as in expression (1) as a 4ˆ4 multiplication table for a binary operation
˚ over the set Q “ t0, 1, 2, 3u (Note: here we abuse and overload the use of the symbol Q both as a

Fig. 1: A graphical presentation of the nonlinear part in GAGE.

symbol for the s-box and for a set.)

˚ 0 1 2 3

0 1 0 3 2
1 0 2 1 3
2 2 3 0 1
3 3 1 2 0

(1)

Finally, the s-box Q can be represented in ANF form as a vector-valued Boolean function that
receives 4 input variables x1, x2, x3, x4 and outputs two Boolean functions:

Qpx1, x2, x3, x3q “ pf1px1, x2, x3, x3q, f2px1, x2, x3, x3qq

given with the expression (2). Operations of addition and multiplication are in the finite filed GF p2q.

Qpx1, x2, x3, x4q “ px1 ` x3 ` x2x3 ` x2x4, 1` x1 ` x2 ` x2x3 ` x4 ` x2x4q (2)

We describe the nonlinear substitution part using the algebraic structure pQ, ˚q. For this, a state
of b bits that is subject of transformation is represented as an array A “ ta0, . . . , ab{2´1u of two bit
elements. The notation x ˚ y “ z means Qpx, yq “ z.

Algorithm 1 Nonlinear substitution of A “ ta0, . . . , ab{2´1u with pQ, ˚q and a leader l.

1: procedure d-transformation(l, A “ ta0, . . . , ab{2´1u)
2: ldr Ð l
3: for i “ 0 to b{2´ 1 do
4: nextldr Ð ai

5: ai Ð ldr ˚ nextldr
6: ldr Ð nextldr
7: endfor
8: Return A

We give here a brief overview of the mathematical properties for the chosen s-box in GAGE and
the mode of operation for using that s-box.

Definition 1. A quasigroup pQ, ˚q is a groupoid satisfying the law

p@u, v P QqpD! x, y P Qq u ˚ x “ v & y ˚ u “ v. (3)

What is characteristic for quasigroups is that equations of the type: a ˚ x “ b or x ˚ a “ b have
unique solutions. The binary operation ˚ induces another binary operation on Q, called left conjugate
or left parastrophe, defined as x “ az˚b iff a ˚ x “ b. It is obvious that pQ, z˚q is a quasigroup and
that the algebra pQ, ˚, z˚q satisfies the identities

xz˚px ˚ yq “ y, x ˚ pxz˚yq “ y. (4)

Consider an alphabet (i.e., a finite set) Q. By Q` we denote the set of all nonempty words (i.e.,
finite strings) formed by the elements of Q. Depending on the context, we use two notations for
elements of Q`: a1a2 . . . an and pa1, a2, . . . , anq, where ai P Q.

Definition 2. Let pQ, ˚q be a quasigroup and M “ a1a2 . . . an P Q` For each l P Q we define two
functions el,˚, dl,˚ : Q` ÝÑ Q` as follows:

el,˚pMq “ b1b2 . . . bn ðñ b1 “ l ˚ a1, b2 “ b1 ˚ a2, . . . , bn “ bn´1 ˚ an,

dl,˚pMq “ c1c2 . . . cn ðñ c1 “ l ˚ a1, c2 “ a1 ˚ a2, . . . , cn “ an´1 ˚ an,

The functions el,˚ and dl,˚ are called a quasigroup string e–transformation (or e–transformation
for short) and a quasigroup string d–transformation (or d–transformation for short) of Q` based on
the operation ˚ with leader l.

Graphical representations of e–transformation and d–transformation are shown in Fig. 2.

a1 a2 . . . an´1 an

l b1 b2 . . . bn´1 bn
�
���

�
���

�
���

�
���

�
���? ? ? ?

l a1 a2 . . . an´1 an

c1 c2 . . . cn´1 cn

- - - - -

? ? ? ?

Fig. 2: Graphical representations of the el,˚ and dl,˚ transformations

Using Definition 2 and the identities (4) it is easy to prove the following theorem.

Theorem 1. If pQ, ˚q is a finite quasigroup, then el,˚ and dl,z˚ are mutually inverse permutations
of Q`, i.e.,

dl,z˚pel,˚pMqq “M “ el,˚pdl,z˚pMqq

for each leader l P Q and for every string M P Q`.

In [3] we proved that some of the well known modes of operations of block ciphers (such as CBC,
OFB and CTR) are actually e–transformation or d–transformation. While the e–transformation is in
essence a sequential procedure (as it is the case with the CBC encryption mode), the d–transformation
is essentially a parallel procedure (a well known fact also for the decryption of the CBC mode). In
contrast to the design of the stream cipher Edon80 [4], the design of GAGE instead of the sequential
e–transformation uses the parallel d–transformation.

There are 576 quasigroups of order 4, and if we sort all of them in a lexicographic order, in GAGE
we are using the quasigroup Nr. 173. Here are the criteria for choosing this particular quasigroup:

1. The quasigroup and its left conjugate (left parastrophe) should be nonlinear Boolean functions;
2. The quasigroup should not have fixed points;
3. The quasigroup should give as little as possible cells with 100% probability in its differen-

tial distribution table and in differential distribution tables obtained from its corresponding
d–transformation.

3 Some yet unpublished properties of the nonlinear substitution part of GAGE

Proposition 1. The quasigroup ˚ used in GAGE is equal to its left conjugate z˚.

Proof. Let us recall that
x ˚ y “ z ðñ xz˚z “ y.

So, from the last equivalence relation, looking at the table (1) we have that 0z˚0 “ 1, 0z˚1 “ 0,
0z˚2 “ 3, 0z˚3 “ 2 and so on. Completing the finding for all entries of the table for pQ, z˚q gives us

z˚ 0 1 2 3

0 1 0 3 2
1 0 2 1 3
2 2 3 0 1
3 3 1 2 0

(5)

Having the property that the S-box in GAGE and its ”inverse” S-box are the same, and having
the Theorem 1 it is clear that the following Corollary holds:

Corollary 1. The inverse permutation of the nonlinear D-TRANSFORMATION of GAGE given in
Algorithm 1 can be realized with the same S-box.

Despite the fact that both the nonlinear permutation and its inverse in GAGE use the same S-box
component, their algebraic degrees are different.

Proposition 2. Let X “ tx0, x1, . . . , xb´2, xb´1u be a state of b bits that is represented as a sequence
of pairs i.e. X ” A “ ta0, . . . , ab{2´1u, where tx2i, x2i`1u ” ai for i P t0, b{2 ´ 1u. Let the two bit
leader is l “ tl0, l1u. Let we denote the output of the nonlinear permutation i.e. the Algorithm 1 as
the state Y “ ty0, y1, . . . , yb´2, yb´1u i.e. Y “ D-TRANSFORMATIONpl,Xq. Then, the algebraic
degree of yi as Boolean functions of the variables xi is 2, and the following recurrence relations hold
for Y :

y2i “ x2i´2 ` x2i ` x2i´1x2i ` x2i´1x2i`1

y2i`1 “ 1` x2i´2 ` x2i´1 ` x2i´1x2i ` x2i`1 ` x2i´1x2i`1 (6)

for i P t0, b{2´ 1u, and where x´2 ” l0 and x´1 ” l1.

Proof. Let us represent the variables ai, ldr and nextldr in the Step 5 of Algorithm 1 as follows: the
pair ai ” ty2i, y2i`1u, ldr “ tx2i´2, x2i´1u and nextldr “ tx2i, x2i`1u. Then the relations (6) follow
directly with a simple substitution.

By a simple replacement is is easy to prove the following Proposition:

Proposition 3. Let X “ D-TRANSFORMATION´1pl, Y q be an inverse of Y that corresponds to
the e-transformation given in Definition 2. Then, the algebraic degree of tx2i, x2i`1u for i P t0, b{2´1u
as Boolean T-functions that depend on variables y0, . . . , y2i is i` 1.

Definition 3. Let us now introduce the following notation:

Component Relations/functions Comment

X “ tx0, x1, . . . , xb´2, xb´1u X is a b bit register.

l “ tl0, l1u
l is a 2 bit leader used in the function
D-TRANSFORMATION().

X “ tl0, l1, x0, x1, . . . , xb´2, xb´1u X “ l||X
X is an extended register of b ` 2 bits
(X prepended with two bits of l).

T1,T2,T3
T1,T2,T3 are temporary registers of
b` 2 bits.

DROPrX, 2s
Drops (removes) the first 2 bits of X
returning a register with b bits.

Mask “ t0, 1, 0, 1, . . . , 0, 1u
Mask is a b ` 2 bits constant register
with 0 on every odd position and 1 on
every even position.

>> X>>s
SHIFT to the right the register X for s
positions.

<< X<<s
SHIFT to the left the register X for s
positions.

XOR X XOR Y
Bitwise addition in GF p2q of the bits
of the registers X and Y.

AND X AND Y
Bitwise multiplication in GF p2q of the
bits of the registers X and Y.

Table 2: Notation for describing the GAGE’s nonlinear D-TRANSFORMATION as SHIFT, XOR and
AND operations on b` 2 bits registers.

Algorithm 2 Input X “ tx0, x1, . . . , xb´2, xb´1u and a leader l “ tl0, l1u.

1: XÐ l||X
2: T1Ð pX XOR pX>>1q q AND Mask
3: T2Ð pX>>2q AND Mask
4: T2Ð T1 AND T2
5: T3Ð T2 XOR pT2<<1q

6: T2Ð

ˆ

´

`

X XOR pX>>2q
˘

<< 1
¯

AND Mask

˙

>> 1

7: T1Ð
´

pX>>3q XOR
`

pX XOR pX>>2qq AND Mask
˘

¯

AND Mask

8: Y Ð T1 XOR T2 XOR T3 XOR Mask
9: Y Ð DROPrY, 2s

10: Return Y

Proposition 4. The Algorithm 2 is equivalent to D-TRANSFORMATION Algorithm 1.

Proof. With a direct simple replacement of the register variables in Algorithm 2 with their values
defined in Definition 3, we get the same Boolean functions for the bits y2i and y2i`1 given in the
expression (6).

Let X, Y and Z are three Boolean vectors each with b ` 2 random variables and let Mask
be a constant pb ` 2q-bit vector. Then, the operations Y Ð X>>s, Y Ð X<<s, Z Ð X XOR Y
and Y Ð X AND Mask are linear operations in the vector space GF p2qb`2, while the operation
Z Ð X AND Y is a nonlinear operation.

Note: The documentation mentions also the Boolean operation NOT, while in Algorithm 2 it is
not present. Actually, it is implicitly present with the operation XOR Mask in Step 8 that negates
every even-position bit.

Corollary 2. In every round of GAGE there is only one nonlinear vector AND operation.

Proof. The only nonlinear vector operation in Algorithm 2 is the operation in Step 4.

4 Conclusions

We presented several properties of the GAGE nonlinear layer that were not published in the initial
documentation of GAGE. We showed that the GAGE’s S-box when represented as a 4ˆ4 quasigroup,
it is a self-conjugate algebraic structure. That means that the same structure can be used to compute
the sponge permutation and its inverse.

We showed also that the algebraic degree of the D-TRANSFORMATION operation in the
GAGE’s permutation is 2, and it differs significantly from the algebraic degree of its inverse which
is exactly b{2.

We also showed interesting feature of GAGE: Modeled as a sequence of vector operations in the
vector space GF p2qb`2, it has very low number of nonlinear vector operations - one nonlinear vector
AND operation per round. In the light of the recent increased interest in cryptographic primitives
with low number of AND gates, it makes GAGE a potential lightweight cryptographic candidate for
Somewhat Homomorphic Encryption, Fully Homomorphic Encryption, MPC protocols, SNARKs,
and post-quantum signature schemes.

References

1. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak sponge function family main docu-
ment. Submission to NIST (Round 2), 3(30), 2009.

2. Danilo Gligoroski, Hristina Mihajloska and Daniel Otte. ”GAGE and InGAGE”. NIST LWC Submission page,
https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates, March 2019.

3. Danilo Gligoroski, Suzana Andova, and Svein Johan Knapskog. On the importance of the key separation principle
for different modes of operation. In International Conference on Information Security Practice and Experience,
pages 404–418. Springer, 2008.

4. Danilo Gligoroski, Smile Markovski, and Svein Johan Knapskog. The stream cipher Edon80. In New Stream Cipher
Designs, pages 152–169. Springer, 2008.

https://csrc.nist.gov/Projects/Lightweight-Cryptography/Round-1-Candidates

	On the S-box in GAGE and InGAGE

